II конференция экспедиционных отрядов учащихся

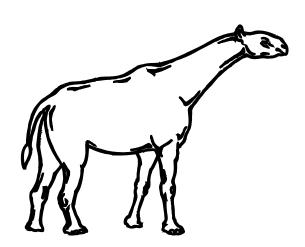
26 ноября 2023 г. Палеонтологический музей им. Ю.А. Орлова ПИН РАН, Москва

ТЕЗИСЫ ДОКЛАДОВ

Председатель Оргкомитета:

с.н.с. Палеонтологического института им. А.А. Борисяка РАН (ПИН РАН), к.б.н. Шмаков А.С.

Члены Оргкомитета:


зав. каб. научн. орг. фондов, в.н.с. Палеонтологического института им. А.А. Борисяка РАН (ПИН РАН), к.б.н. Бойко М.С.

пед. орг. Московского детско-юношеского центра экологии, краеведения и туризма (МДЮЦ ЭКТ), Кучер Д.Б.

геолог ООО «Институт геотехнологий», асп. геологического ф-та МГУ им. М.В. Ломоносова, Гаинцев И.А.

Ответственный секретарь:

п.д.о. Московского детско-юношеского центра экологии, краеведения и туризма (МДЮЦ ЭКТ), Кулагина Л.В.

Электронное издание школьных учебных работ

ВЛИЯНИЕ ТРАВЕРТИНОГЕНЕЗА НА ФОССИЛИЗАЦИЮ НА ПРИМЕРЕ ГОЛОЦЕНА ЛЕНИНГРАДСКОЙ ОБЛАСТИ

Башилов Константин

Лаборатория экологии морского бентоса Эколого-биологического центра 9 химбио класс, лицей № 533, г. Санкт-Петербург Науч. рук.: Хайтов В.М., к.б.н., доцент, Никитин М.Ю., к. геогр. н., доцент mbatakov@mail.ru

В работе рассматриваются процессы травертиногенеза, происходившие на Ижорском плато 9 – 6.8 тыс лет назад. Результаты этих процессов можно наблюдать в следующих местонахождениях: в поселке Пудость, деревне Покизен-Пурская и деревне Антелево. Все указанные населенные пункты находятся на реке Ижора в Гатчинском районе Ленинградской области (ЛО). В указанных местонахождениях собраны остатки флоры и фауны: остатки гастропод, наземной растительности (мхи), харовых водорослей. Сбор проходил вдоль русла реки Ижора в указанных населённых пунктах и в карьере, где ранее добывали травертин.

Сравниваются процессы, происходящие в голоцене с нынешними процессами образования травертина на Симоновском ручье, пос. Большое Забородье, Ломоносовского района ЛО. Для этого мы взяли пробы воды и современные образования из ручья.

Цель: Рассмотрение процесса травертиногенеза как процесса фоссилизации организмов, прослеживание аналогии в современных условиях формирования травертина и травертиногенеза, происходившего в голоцене.

Методы и инструменты: сбор образцов в местонахождениях травертина возрастом 9–6,8 тыс. лет. Сбор образцов флоры и фауны в современных родниках, ручьях и реках, где в нынешнее время происходит процесс тревертиногенеза. Сбор образцов воды из мест современного травертиногенеза, определение карбоната кальция в составе воды. Сравнение образцов голоценовой флоры и фауны с современными образцами флоры и фауны из источников с повышенным содержанием карбоната кальция.

Работа содержит описание местонахождений, фотографии образцов, описание образцов, выводы по работе.

ФАУНА И ФЛОРА СРЕДНЕГО ТРИАСА ИЗ ОБНАЖЕНИЙ У Д. СТАРОЕ КОЛТАЕВО (БАШКОРТОСТАН)

Воронкина Арина

9 класс, школа № 57, г. Москва Науч. рук.: Сенников А.Г., к.б.н., зав. лаб. палеогерпетологии ПИН РАН $\underline{voronkinaa26@sch57.ru}$

В ходе выезда школьного ПалеоКружка при ПИН РАН в период с 12 по 25 августа 2023 года были организованы раскопки остатков амфибий, тероморфов и архозавров среднего триаса из обнажений у д. Старое Колтаево, Куюргазинский р-н, Башкирия. Соль-Илецкий район является эталонным для континентального среднего триаса востока Европейской части России. Здесь впервые для этого региона обнаружена и описана среднетриасовая фауна наземных позвоночных (Вьюшков, 1949; Очев, Шишкин и др., 1964).

В составе среднего триаса Южного Приуралья в настоящее время выделяются донгузская и букобайская свиты, которым соответствуют фауны *Eryosuchus* и *Mastodonsaurus*, встреченные у д. Старое Колтаево. Здесь в ряде обнажений наблюдаются четыре костеносных толщи. В Колтаево 1,4 и 2 — средний триас, анизийский ярус, донгузский горизонт (донгузская свита), а в Колтаево 3 — средний триас, ладинский ярус, букобайский горизонт (букобайская свита).

Во время раскопок из Колтаево II (или 2??) в песчано-алевритистой линзе старичного происхождения было обнаружено некоторое количество костей, часть из которых удалось отпрепарировать и определить: позвонок редко встречающегося в среднем триасе России лабиринтодонта *Plagiosternum*, левая лобная кость каннемейероидного дицинодонта *Rhadiodromus*, другие кости черепа, проксимальная часть левой плечевой и, предположительно, лучевой кости дицинодонтов семейства Каппетеуегііdae; хвостовой позвонок раннего архозавра, возможно, эритрозухида *Uralosaurus*. Также впервые были найдены в больших количествах остатки макрофлоры, ранее не отмеченной из донгузской свиты. Большая часть костей на данный момент не извлечена из пород.

Обнажения у д. Старое Колтаево представляют интерес из-за хорошей сохранности остатков фауны и их большого количества, по которым можно проследить восстановления сообществ после пермо-триасового экологического кризиса и смену доминирующих групп. Так же особое внимание привлекает наличие в одном разрезе трех разновозрастных костеносных горизонтов — редчайший случай, очень облегчающий стратиграфические сопоставления.

В данной работе будут рассмотрены найденные нами кости и их принадлежность к определённым таксонам, триасовая фауна и флора России в целом.

ПРИМЕНЕНИЕ МЕТОДОВ СПОРОВО-ПЫЛЬЦЕВОГО АНАЛИЗА В РАЗНЫХ СФЕРАХ ПАЛИНОЛОГИИ

Галанова Дарья

7 класс, школа № 2123, г. Москва Науч. рук.: Теклева М.В., к.б.н., с.н.с. лаб. палеоботаники ПИН РАН $\underline{doraowl2021@gmail.com}$

В рамках данной работы были проведены исследования в области палиноморфологии, мелиттопалинологии и палеопалинологии.

Для палиноморфологических исследований материалом послужили современные почвенные пробы Звенигородской биостанции и голоценовые пробы Вологодской области. Определены и описаны пыльцевые зерна, относящиеся к 22 родам и 21 семейству, с помощью световой и сканирующей электронной микроскопии.

Для мелиттопалинологических исследований материалом послужил алтайский мед. Показано, что образец не соответствует заявленному производителем типу меда (монофлорный донниковый мед), а представляет собой полифлорный полевой мед. Обнаруженные в комплексе пыльцевые зерна березы указывают на то, что эта партия меда, по-видимому, была упакована в период активного цветения березы (весной).

Для палеопалинологического исследования проведен спорово-пыльцевой анализ двух образцов («л. 4.5» (470-440 см) и «л. 5.4» (575-470 см)) озерных суглинков из скважины Ch-1 (Лужский район, Ленинградская область); разрез находится вблизи южной границы подзоны южнотаежных темнохвойных лесов из ели обыкновенной. Для каждого образца проведен подсчет до 300 пыльцевых зерен, принадлежащих в среднем 25 таксонам. Проведена стандартная статистическая обработка и краткое описание проб. Показано доминирование пыльцы (п.) деревьев и кустарников, среди древесных пород преобладает береза, сосна обыкновенная, ель и ольха. Из травянистых растений преобладают злаки. Споры немногочисленны, в основном это многоножковые папоротников и хвощ. При сравнении полученных мною данных с данными сотрудников института географии по всему разрезу (Нарышкина и др., 2022), проба «л. 5.4» относится к выделенной ими подзоне ЛПЗ L-2a, проба «л. 4.5» относится к подзоне ЛПЗ L-2b. Граница этих подзон соответствует верхней границе раннего голоцена (гренландия) по международной стратиграфической схеме. По сравнению с ЛПЗ L-1b из нижележащих слоев подзона ЛПЗ L-2b характеризуется стабильно высоким содержанием п. ольхи, снижением доли п. сосны, увеличением доли п. ели, увеличением доли п. широколиственных пород (дуба, липы, бука, ясеня, клена). Подзона ЛПЗ L-2b отличается от L-2a практически полным отсутствием (п.з.) сосны и сокращением доли п.з. ели, увеличением доли п.з. ольхи и лещины, а также сокращением разнообразия п.з. кустарников и трав. Наиболее ярким

отличием данного разреза является низкое содержание п. сосны, а затем и полное ее исчезновение в раннеатлантическое время, которое, вероятно, объясняется широким распространением суглинистых отложений неблагоприятных для развития сосновых лесов в этом районе (Нарышкина и др., 2022).

МИОЦЕНОВЫЕ НАСЕКОМЫЕ КРАСНОДАРСКОГО КРАЯ

Ганшкевич Анастасия

8 класс, МАОУ Домодедовская СОШ № 9 им. Д.К. Курыжова, г. Домодедово Науч. рук.: Василенко Д.В., к.б.н., зав. лаб. артропод ПИН РАН stasy.gans@gmail.com

В ходе выезда ПалеоКружка при ПИН РАН в период с 9 по 12 июня 2023 года были проведены раскопки остатков флоры и фауны миоцена береговых отложений реки Пшеха под Апшеронском, Краснодарский край.

Основными ископаемыми здесь являются листья наземных растений и рыбы. Так же на этих местонахождениях встречаются бурые водоросли, крабы и фрагменты других ракообразных, птицы и насекомые. Несмотря на хорошую сохранность и родовое разнообразие энтомофауны, насекомые отсюда целенаправленно не изучались. В коллекциях лаборатории артропод ПИН РАН представлено более 700 образцов с береговых отложений реки Пшеха. За поездку ПалеоКружка было найдено крыло стрекозы из семейства Libellulidae, которое характерно для этих мест.

Особенностью данного местонахождения является тонкая сохранность, благодаря которой могут в виде отпечатков фоссилизироваться мягкие ткани. Порода представлена в виде тёмно-серых тонкослоистых глин глубоководной фации с признаками сероводородного заражения дна в миоцене, о чём свидетельствует пиритизация отложений . Нахождение здесь насекомых свидетельствует о наличии суши (островов?) в относительной близости от места захоронения. По данным Д.Е. Щербакова и Д.В. Василенко (устное сообщение), комплекс тарханских насекомых теплолюбивый, с преобладанием муравьев; много также кузнечиков и сверчков, разных жуков; имеются находки крупных термитов, мух, клопов, цикадок-бабочек Ricaniidae, пенниц Aphrophoridae, стрекоз Chlorocyphidae, единичных пауков и сенокосцев.

В данной проектной работе будут рассмотрены образцы насекомых из коллекций ПИН РАН и их принадлежность к определённым таксонам, ознакомление с проблематикой местонахождения на реке Пшеха Краснодарского края.

ОКАМЕНЕЛОСТИ МОСКОВСКОЙ ОБЛАСТИ: ПОИСК НОВЫХ МЕСТОНАХОЖДЕНИЙ

Грязнов Егор

4 класс, Лесногородская СОШ общеобразовательное отделение Дубковская школа Одинцовского городского округа Московской области, г. Одинцово Науч. рук.: Язвенко О.О., учитель биологии

Конс.: Хотылев А.О., к.г.-м.н., доцент lsgrvaznova@gmail.com

В работе исследуется способ поиска новых местонахождений ископаемых остатков в Московской области путём сопоставления географических и геологических карт со спутниковыми снимками. Гипотеза была такой: если найти карьеры на географической карте или на спутниковых снимках и сопоставить их с геологической картой Московской области, то можно найти новые местонахождения окаменелостей с отложениями нужного нам геологического возраста. Мы ограничились Можайским районом и искали только недействующие карьеры. Были использованы сервисы "Wikimapia", "Яндекс.Карты" и "Google Карты", геологические карты 1998 и 1961 годов.

На карте "Wikimapia" можно отфильтровать нужные места, посмотреть их фотографии и прочитать комментарии пользователей о данной местности. Таким образом были найдены карьеры у деревень Вяземское, Бугайлово и Лужки. Ещё были использованы спутниковые снимки, чтобы найти те места, которые не отмечены на "Wikimapia". На спутниковых снимках были найдены карьеры у деревень Сальницы и Бабаево. Удалось изучить только карьеры у деревень Бугайлово, Сальницы и Лужки.

Сначала был посещен карьер у д. Бугайлово. Породы относятся к каширскому горизонту московского яруса среднего карбона. Карьер разрабатывается неактивно. Основные находки: губки хететесы, кораллы и брахиоподы — все хорошей сохранности. Местонахождение перспективное, планируем изучать его дальше.

Потом был посещён карьер у д. Сальницы. Основные находки: крупные брахиоподы и губки хететесы. Сохранность умеренная. Возникли проблемы с определением возраста пород. На геологической карте 1998 г. они относятся к юрской системе, однако на более старой карте 1961 г. они относятся к каменноугольной системе. Почти все находки были отнесены к верейскому горизонту московского яруса среднего карбона. Карьер можно изучать дальше, но нужно разобраться с геологическим возрастом пород в нём.

Последним был посещен карьер у д. Лужки. Он оказался снова действующим и называется "Месторождение доломитов Лужки-1". Породы относятся к каширскому горизонту московского яруса среднего карбона. Основные находки: брахиоподы и кораллы. Сохранность плохая. Карьер не подойдёт для любителей, но может заинтересовать специалистов, пока его не затопили снова.

В итоге найдено три перспективных местонахождения в Московской области. Было собрано и определено 48 образцов окаменелостей. Использованный способ поиска новых местонахождения окаменелостей эффективный и подходит не только для Можайского района, но и для всего Подмосковья.

НЕКОТОРЫЕ АСПЕКТЫ ПАЛЕОЭКОЛОГИИ DITOMOPYGE MOSQUENSIS

Ильиных Евдокия

1 класс, школа № 152, г. Москва mariakirikova1@yandex.ru

Я нашла на карьере Гжель трилобита на образце известняка и определила его как *Ditomopyge mosquensis*. На плитке ещё была морская лилия, морской ёж, брахиопода и мшанки (три вида). Я затеяла эту работу, чтобы узнать, как он называется (*Ditomopyge mosquensis*), как этот вид жил, узнать его описание, как он выглядел. Ещё, чтобы узнать, кто около него жил, кто мог его есть, как он линял и как питался.

Я взяла определитель "Ископаемые московского региона" и учебник "Палеонтология" авторы Михайлова и Бондаренко, а ещё я взяла методички Морозова. Я прочитала в книжках, упомянутых выше и не только в них всё про трилобитов. Узнала про анатомию трилобитов, про их линьку, про варианты того, как они питались. Я нашла статью про *Ditomopyge mosquensis* и прочитала в ней описание этого трилобита и сделала несколько выводов: 1) *Ditomopyge mosquensis* питался планктоном, мы не знаем: хищник он был или нет; 2) жил на небольшой глубине; 3) им питались наутилоидеи и хрящевые рыбы; 4) установила, как линял *Ditomopyge mosquensis* — он зацеплялся щёчными шипами за субстрат, далее у него раскрывались лицевые швы и мягкий трилобит выползал в получившееся отверстие.

Вид *Ditomopyge mosquensis* описали в 2018 году Мычко и Алексеев. Он отличается от остальных видов, например, *Kaskia ivanovii* тем, что у него более выраженные осевые кольца на пигидии. *Kaskia ivanovii* и *Ditomopyge mosquensis* жили в карьере Гжель в верхнем карбоне гжельского яруса. *Ditomopyge mosquensis* размер до 5см. встречался ещё в Русавкино и Щёлково.

Про образец *Ditomopyge mosquensis* я предположила несколько выводов:

- 1) Не могу сразу сказать: это был голаспис или мераспис потому, что мой образец пигидий 1 см, а полностью трилобит был 5см. Предположительно это голаспис, не мераспис.
- 2) Мой образец *Ditomopyge mosquensis* мог быть или фрагмент целого трилобита или отброшенный пигидий (пигидий отбрасывался во время линьки у некоторых видов трилобитов).

Вывод: Мне не хватает образцов, чтобы узнать о питании *Ditomopyge mosquensis*. Я хотела бы найти торакс и цефалон трилобита, это поможет мне узнать, чем питался трилобит. Если я буду иметь образец с ногами трилобита, то увижу, какие они и пойму, хищник он или нет.

ИЗУЧЕНИЕ ИСКОПАЕМЫХ ОРГАНИЗМОВ НА ОСТРОВЕ ОЛЕНЕВСКОМ

Корчинский Константин

8 класс, ГБОУ Школа 1501, г. Москва Вперед в прошлое, ГБОУДО МДЮЦ ЭКТ

Науч. рук.: Корчинский А.Ю., учитель биологии; Кучер Д.Б., пед.орг. МДЮЦ ЭКТ kon-kor-1@yandex.ru

Цель: изучить палеофауну позднего голоцена, обнаруженную в отложениях на о. Оленевском.

Я поставил задачи провести сбор и анализ материала из точки, обнаруженной в 2011 году. Определить, классифицировать находки и сравнить с данными, полученными ранее по локации на Оленевском и в районе ББС.

Актуальность определяется проведением палеозоологических и палеоэкологических реконструкций и выявлением новых видов с использованием новых для этого места методик.

Место нашего исследования было обнаружено в 2011 году совершенно случайно во время хозяйственных работ. Оно находится около лагеря, приблизительно в 100 метрах от берега острова. Аналогичный объект есть около ББС, там локация чуть больше. Данная точка исследовалась студентом кафедры палеонтологии геологического факультета МГУ Э.В. Мычко. В результате исследований была составлена схема слоя, определены виды малакофауны, найденные там, а также был определён их возраст примерно 7.5 тыс. лет. Эти данные представлены на сайте Беломорской Биологической Станции МГУ, мы их использовали в нашей работе. По составу пород локация на ББС весьма сходна с локацией на о. Оленевском. В этом году, спустя 11 лет, мы решили снова исследовать эту точку, но уже с применением методики тщательной промывки продуктивного слоя и массового сбора отмытых образцов.

Собрана коллекция из 200 экземпляров. Сделан количественный подсчет фаунистических остатков, отмытых из образцов породы, которые были отобраны из линзы. После подсчета были построены таблицы и диаграммы. На основании фаунистических отличий было решено разделить отложения линзы на два слоя, что ранее не предпринималось. По наличию определенных форм установлено, что толща сформировалась в атлантическую фазу четвертичного периода.

В материале были обнаружены и определены следующие виды: *Elliptica eliptica*, *Tridonta borealis*, *Puncturella noachina*, *Hiatella arctica*.

Находки были сравнены с находками на ББС и, как и ожидалось, они практически полностью совпадают. Однако в целом количество видов, обнаруженных в точке на острове Оленевский, меньше, чем в локации у ББС. Возможно, это связано с тем, что авторами работы было промыто меньше материала, чем Мычко Э.В. В 2006 году.

ПАЛЕОНТОЛОГИЧЕСКАЯ ЭКСПЕДИЦИЯ В ОКРЕСТНОСТИ РЕКИ ПШЕХА (КРАСНОДАРСКИЙ КРАЙ) В ИЮНЕ 2023 ГОДА

Куртова Софья¹, Солдатов Роман²¹3 класс, ОАНО Школа НИКА, г. Москва,
²3 класс, МБОУ СОШ № 1, г. Фрязино
¹nitek.docs@gmail.com ²nastenchik skorp@mail.ru

Участники исследования с 9 по 12 июня 2023 года приняли участие в экспедиции на реку Пшеха Краснодарского края в составе ПалеоКружка при ПИН РАН.

Поисковые работы проводились на береговых обрывах реки Пшеха и ее притоках. Предполагалось проведение раскопочных работ в олигоценовых и миоценовых толщах палеогена и неогена (кайнозойская эра), а также в слоях мелового периода мезозойской эры.

Особенность окаменелостей в данной местности - тонкая сохранность, благодаря которой в виде отпечатков могут частично фоссилизироваться мягкие ткани.

В первый день в тонкослоистых породах, представленных в том регионе глинами разной степени твёрдости и цветности, были найдены водоросли, листья наземных растений, чешуя рыб. Отпечатки фоссилий на глиняных плитках были достаточно хрупкими и требовали очень бережного обращения.

Второй день – выезд на поиски аммонитов в отложениях мелового периода в русле одного из притоков реки Пшеха. Найдено множество аммонитов разной величины и сохранности.

Третий день – раскопочные работы на реке Пшеха. Найдены отпечатки флоры и фауны. Особый интерес представляют отпечатки рыб и позвоночник китообразного, найденный участниками экспедиции.

Четвертый день был посвящен извлечению позвоночника китообразного методом «пирога».

В результате экспедиции были обследованы отложения, относящиеся к различным периодам, расположенные в долине реки Пшеха, был собран разнообразный материал, представляющий интерес для дальнейшего изучения.

ТАФОНОМИЧЕСКАЯ СУКЦЕССИЯ АММОНИТОВ РАЗРЕЗА ПЕСКИ 2 (КОЛОМНА, МОСКОВСКАЯ ОБЛ.)

Мирошниченко Матвей

10 класс, частная школа Прометей, г. Звенигород Науч. рук.: Бойко М.С., к.б.н., в.н.с. лаб. моллюсков ПИН РАН *finnn2007@gmail.com*

Многочисленные находки келловейских аммонитов из «конкреций» зоны athleta-lamberti разреза Пески 2 давно известны специалистам, а также любителям палеонтологии. Тщательное изучение материала из этого местонахождения позволило установить условия седиментогенеза, тафогенеза и образования конечного ориктоценоза.

Тафономическая сукцессия аммонитов разреза Пески 2	
Фазы тафогенеза	Процессы и признаки
Оседание раковин погибших аммонитов и	Первичное заполнение раковин осадком.
заполнение раковин карбонатным	Часто не полное заполнение жилой камеры,
(оолитовым илом).	раковины лежащей на боку.
Пребывание раковин в виде «островков»	Инкрустация поверхности раковин скелетами
хардграунда на поверхности жидкого осадка	прикрепленного бентоса. Заселение бентосом
и заселение раковин обрастателями.	внутренней поверхности жилой камеры.
Полное погребение в осадке и деформации	Заполнение остаточной полости жилой
(растрескивание) раковин под давлением	камеры осадком. Трещины стенок раковины с
неуплотненного осадка.	незначительным смещением осколков.
Фоссилизация за счет цементации	Формирование собственно фоссилии —
карбонатного ила и миграции карбонатных	отвердевание ядер и зарастание полостей
растворов внутри него.	фрагмокона щетками кальцита.
Эрозия образовавшейся горной породы	Образование отдельно лежащих фоссилий
вследствие понижения уровня моря,	аммонитов, полностью, или частично
формирование хардграунда и выпадение или	свободных от породы. Разрушение раковины
частичное обнажение ископаемых из горной	на освобожденных от породы участков и/или
породы.	разрушение части фоссилиий.
Вторичное заселение раковин обрастателями.	Инкрустация ядер аммонитов обрастателями.
Формирование конечного ориктоценоза.	Вторичное и окончательное погребение в
	глинистом осадке.

Материалом нашего исследования являются коллекции ПалеоКружка при ПИН РАН. Подавляющая часть находок сделана разными сборщиками в разные годы как из отвалов, так и из коренных выходов горных пород.

В результате проведенного исследования нами предложена история формирования данного ориктоценоза, отраженная в приведенной таблице.

Не все седиментологические, биоинкрустационные и диагенетические признаки имеющегося материала удалось полностью расшифровать и интерпретировать, что является предметом дальнейшего изучения.

ОБ УЧАСТИИ В ПАЛЕОНТОЛОГИЧЕСКИХ ИССЛЕДОВАНИЯХ НАУЧНО-ПРОСВЕТИТЕЛЬСКОЙ ЭКСПЕДИЦИИ «ФЛОТИЛИЯ ПЛАВУЧИХ УНИВЕРСИТЕТОВ – 2023»

По итогам выступления на Всероссийской школе-конференции «Хранители Земли» (14-15 февраля 2023 г.) победители конкурса «Человек на Земле» - школьники из Гимназии № 94 г. Казани были награждены Неправительственным экологическим фондом им. В.И. Вернадского путевкой на научно-просветительскую экспедицию «Флотилия плавучих университетов». Экспедиция состоялась с 1 по 10 июля 2023 года в Саратовско-Волгоградском Поволжье, маршрут: Петров Вал – Вихлянцево – Ионов – Камышин – Галка – Нижняя Банновка – Золотое – Саратов.

Во время экспедиции наша команда участвовала в геологическом практикуме под руководством Иванова А.В. (кандидат геолого-минералогических наук, старший научный сотрудник МГУ и Института географии РАН). Было исследовано геологическое строение разрезов палеогеновых отложений вдоль берега реки Волга в 10 км от хутора Ионов, собраны образцы палеопочв.

Под руководством Маленкиной С.Ю. (кандидат геолого-минералогических наук, старший научный сотрудник МГУ) проведено исследование палеоценовых песков в близлежащих карьерах в окрестностях г. Камышин, изучение строматолитов и онколитов (разновидности бактериально водорослевых построек), формирующих скальные образования памятника природы регионального значения «Камышинские Уши и Лоб». В меловых и палеогеновых разрезах в районе с. Нижняя Банновка изучались следы жизнедеятельности донных организмов (ихнофоссилии). На разрезе рядом с селом Золотое совместно с учеными МГУ отобраны пробы и образцы почв.

По результатам экспедиции в гимназии организовали фотовыставку, которая носит просветительский характер. В лабораторных условиях провели описание и систематизацию собранных образцов, среди которых ходы илоедов, ориктоценоз — плита песчаника с собранием разных сообществ организмов, окремневшая древесина, онколиты, белемниты, отпечаток раковины двустворки, останки окремневшей губки.

В настоящее время ведется дальнейшая работа по изучению отобранного материала.

НОВАЯ НАХОДКА ЮРСКИХ ОТЛОЖЕНИЙ НА ТЕРРИТОРИИ КАРЬЕРА В Г. ДОМОДЕДОВО

Рослякова Светлана

9 класс, МБОУ СОШ № 15 им. Б.Н. Флёрова, г. Королёв Науч. рук.: Аристов В.В. svetaroslakova750@gmail.com

До 2023 года на территории карьера в городе Домодедово находки ископаемых из отложений юрского периода были единичными и редкими. Карьер был известен породами каменноугольной системы московского яруса.

В 2023 году в ходе промышленной разработки карьера был вскрыт слой черных глин значительной мощности. В ходе ряда геологических выездов музея «Ключ Земли» под руководством Аристова В.В. мной были изучены данные обнажения и составлено описание толщи. В процессе изучения были найдены многочисленные органические остатки: раковины и отпечатки аммонитов, белемнитов, двустворчатых моллюсков. Также были сделаны многочисленные находки пиритовых и фосфоритовых конкреций. Найденные в ходе выездов окаменелости аммонитов относятся к роду *Атоевосетаs*, это позволяет отнести данные слои к оксфордскому ярусу. Нами составлена обобщенная стратиграфическая колонка юрских отложений в районе карьера в г. Домодедово.

Таким образом, эти находки позволяют сделать вывод, что на территории карьера в г. Домодедово находятся породы, соответствующие оксфордскому ярусу юрского периода, ранее не описанные в литературе.

ПЛАВНИКИ BOTHRIOLEPIS

ИЗ ВЕРХНЕДЕВОНСКИХ ОТЛОЖЕНИЙ Р. ЛОВАТЬ (НОВГОРОДСКАЯ ОБЛ.)

Сотников Леонид

9 класс, ГБОУ Школа Интеллектуал, г. Фрязино Науч. рук.: Лебедев О.А., к.б.н., с.н.с. лаб. палеоихтиологии ПИН РАН l.sotnikov@sch-int.ru

Описание и систематика рода *Bothriolepis* широко представлены как в отечественной, так и в зарубежной литературе. В то же время, количество отмеченных в литературе образцов плавников видов *Bothriolepis*, характерных для российских регионов, относящихся к Главному девонскому полю, не превышает пяти. Эти сборы относятся к середине-концу XX в., и их сохранность не всегда удовлетворительна.

По итогам экспедиции ПалеоКружка (р.Ловать, фран, в.девон) в августе 2022 г. было собрано несколько новых образцов плавников *Bothriolepis*. В течение 2023 г. автором проводились работы по их препаровке и описанию.

Результатом исследовательской деятельности является сбор статистической информации по 3 проксимальным и 3 дистальным сегментам плавников *Bothriolepis*, также в обработке находятся два плавника из сборов Обручева Д.В. из этого же региона.

Проведённые исследования увеличивают число описанных экземпляров Bothriolepis.

ЛЕТНИЙ ВЫЕЗД НА ОРДОВИКСКИЕ ОТЛОЖЕНИЯ (Д. РОГАЧЁВО, Г. ВЫШНИЙ ВОЛОЧЕК)

Федосов Владимир 1 , Денисенко Максим 2 , Милешкин Вячеслав 3 1,2 9 класс, ГБОУ Школа № 1449, 3 8 класс, ЧОУ Фоксфорд, г. Москва Вперед в прошлое Науч. рук.: Кучер Д.Б., пед.орг. МДЮЦ ЭКТ; Бойко М.С., к.б.н., в.н.с. ПИН РАН paleo.mdebc@yandex.ru

Летом 2023 г. был организован выезд кружка «Вперёд в прошлое» на ордовикские отложения в село Рогачево, Тверская область. Вышневолоцкие выходы ордовика представлены тремя карьерами, располагающиеся друг относительно друга на расстоянии около 2 километров, интересно, что в каждом из них слои расположены под разным углом. Эта особенность может указывать на привнос данного материала ледником из более северных областей.

Целью нашего выезда были поиск иглокожих и изучение слоев, богатых фауной. В ходе наших работ была сделана расчистка, в которой хорошо прослеживались слои. За 4 дня нашего пребывания на карьере были собраны трилобиты (Illaenus, Asaphus, Cybele, Prochasmops praecurrens), множество иглокожих (Protocrinites fragum, Hemicosmites, Echinoencrinites, Bolboporites,

Cryptocrinites) и брахиопод (Hemipronites, Lycophoria, Lycophoria, Lingulaformea). Ниже приводим краткое описание вскрытых нами слоев:

1 верхний слой – достаточно плотный известняк, в котором относительно часто встречаются трилобиты, в большинстве своем фрагментированы (мощность около 15 см).

2 слой – мало чем отличается от предыдущего, лишь тем, что он более мягкий и в нём практически нет фауны (мощность около 14 см).

3 слой — это тоненькая прослойка глины зелёного цвета (мощность около 7 см). Встречаются иглокожие и трилобиты в хорошей сохранности.

4 слой сложен красной глиной, в разных местах имеет разную мощность от 5 см, до 25см, в нём сделаны находки самых интересных иглокожих, мшанок, трилобитов и брахиопод.

5 слой – твердый известняк, в котором трилобиты имеют очень хорошую сохранность, а также оттуда происходят почти все наши находки *Cryptocrinites* (18 см).

6 слой – известняк, фауна не обнаружена (6см).

7 слой представлен тонким слоем зелёный глины, фауна не обнаружена (4см).

8 слой очень похож на четвёртый, но менее массивный и имеет меньшую концентрацию находок, но эти находки обладают лучшей сохранностью (4-15см).

9 слой – практически пустой известняк (12см).

10 слой – монолитная плита.

Выводы: нами сделано описание слоев, которые в данном месте подробно не описывались. В дальнейшем мы планируем сопоставить его с известными ордовикскими разрезами сопредельных областей. Нами проведен анализ фауны, в дальнейшем планируем изучение биотопов новых слоев с точки зрения статистики и описание новых интересных находок неописанных видов.

ПЕРВЫЕ ДАННЫЕ ПО МИОЦЕНОВЫМ ЖЕСТКОКРЫЛЫМ КЕРЧЕНСКОГО ПОЛУОСТРОВА

Хоменко Фёдор

8 класс, МБОУ лицей № 14 им. М. М. Громова, г. Жуковский Науч. рук.: Василенко Д.В., к.б.н., зав. лаб. артропод ПИН РАН xoxaxoxa28@gmail.com

На основе публикаций и личных полевых наблюдений получены новые данные по геологии и стратиграфии отложений миоцена Крыма. Удалось уточнить географические привязки местонахождений, а также береговой линии в тархане; были установлены слои, содержащие остатки насекомых.

До этого из миоцена Крыма были описаны лишь стрекоза, цикадки и муравьи, но о жуках имелись лишь предварительные определения. С помощью специалистов лаборатории артропод ПИН РАН нами была определена большая часть коллекции жуков до семейства, среди них долгоносики

(Curculionidae), стафилиниды (Staphylinidae), пластинчатоусые (Scarabeidae) и листоеды (Chrisomelidae). Особое внимание акцентировано на листоедах ввиду их массовости. С помощью томографа были получены изображения земляной блошки (Alticini) нехарактерной для этих слоев 3D-сохранности, а также определены до видов представители рода радужницы (*Donacia*) — это *Donacia polita* и *D. versicolorea*. По аналогии с местообитанием современных представителей этих видов можно судить о прибрежной растительности рек Крыма того времени. Ее составляли рдесты, камыши и рогозы. Древнейшие представители этого рода были описаны из палеоцена Дальнего Востока России.

По сравнению с другими подсемействами листоедов палеонтологическая летопись Donaciini очень скудна, поэтому любые данные по этой группе имеют большое значение.

СЛЕДЫ ДЕЯТЕЛЬНОСТИ РЕДУЦЕНТОВ НА КОПРОЛИТАХ ПОЗВОНОЧНЫХ ВЯЗНИКОВСКОЙ ФАУНЫ

Черных Федор

11 класс, школа № 1570, г. Москва Науч. рук.: Сенников А.Г., к.б.н., зав. лаб. палеогерпетологии ПИН РАН *chernykhfedor06@gmail.com*

На настоящий момент биология редуцентов в экосистемах поздней перми изучена недостаточно. На основе данных, полученных в результате исследования копролитов позвоночных вязниковской фауны, можно выявить их особенности жизнедеятельности. Это позволяет уточнить роль различных организмов, занимавших нишу редуцентов, и выявить ранее неизвестные аспекты их биологии.

Раскопки и сбор ископаемого материала производился в 1999-2022 годах в позднепермских отложениях из местонахождений Быковка, Жуков овраг и других (Владимирская область, окрестности гг. Вязники и Гороховец). Из полученного материала отбирались копролиты, которые позже препарировались в лабораторных условиях, маркировались и заносились в коллекцию ПИН РАН. При разборе материала отмечались следы жизнедеятельности редуцентов и морфотипическая принадлежность копролитов. В ходе исследования применялись методы томографии, 3D моделирования и сканирующей электронной микроскопии.

В данном исследовании была проведена ревизия типов следов жизнедеятельности редуцентов, содержащихся на копролитах позвоночных вязниковской фауны, их возможная таксономическая приуроченность и механизмы образования. Было показано наличие копрофагов различных размерных классов и типов специализации, последовательно сменявших друг друга. Первыми появлялись мелкоразмерные редуценты — свободноживущие Nematoda и мелкоразмерные жуки-пермосиниды (Permosynida), поедавшими полужидкую фракцию фекалий и бактерий в ней

содержащихся. Параллельно происходило бактериальное разложение. С высыханием копролита им на смену приходили крупноразмерные редуценты – тараканы (Blattida), оставлявшие поверхностные погрызы и жуки-пермосиниды (Permosynida), формировавшие цилиндрические ходы большего диаметра. Было доказано, что насекомые конвергентно приходили к экологической нише копрофагов неоднократно, начиная с поздней перми.

ИСКОПАЕМАЯ ФАУНА ЕВЛАНОВСКОГО ГОРИЗОНТА ИЗ МЕСТОНАХОЖДЕНИЯ У РЕКИ БОЛЬШОЙ ВЕРЕЙКИ (ВОРОНЕЖСКАЯ ОБЛ.)

Шмаков Вячеслав

9 класс, ГБОУ Школа № 1515, г. Москва Вперед в прошлое Науч. рук.: Кучер Д.Б., пед.орг. МДЮЦ ЭКТ; Бойко М.С., к.б.н., в.н.с. ПИН РАН shmakovslava2007@gmail.com

Материал для исследования был собран в ходе экспедиции палеонтологического кружка ГБОУДО МДЮЦ ЭКТ летом 2023 г. Задачами являлись сбор ископаемых и последующее их камеральное определение, поиск новых систематических групп и реконструкция некоторых экологических характеристик палеоценоза.

В ходе экспедиции нашего палеонтологического кружка под руководством Дмитрия Борисовича Кучера и Максима Сергеевича Бойко летом текущего года было исследовано обнажение у реки Большой Верейки. В этом местонахождении отмечается переслаивание известняков и светлобурые глины с богатой фауной разных групп. Можно сделать вывод, что стратиграфический интервал этого разреза относится к евлановскому горизонту франского яруса верхнего девона на основании находок брахиопод (Theodossia evlanensis, Cyrtospirifer markovskii, Variatrypa tanaica).

Основными компонентами фауны являются брахиоподы. Большая часть образцов представляла остатки их раковин: вид *Theodossia evlanensis* встречаются в изобилии, также довольно обычны и *Cyrtospirifer markovskii*, *Variatrypa tanaica*, реже *Productella* sp., очень редко *Schuchertella devonica* и *Isopoma lummanitensis*.

Среди фауны моллюсков преобладает класс брюхоногие. Из них встречаются, в основном, формы с башенковидной раковиной (*Murchisonia*), реже с турбоспиральной (*Euomphalus*, *Platyschisma*) и планоспиральной (*Pedasiola*, *Bellerophon*).

Среди головоногих моллюсков нередко встречаются фрагменты ортоцератид, реже дискоцератид. Амонноидеи здесь крайне редки и представлены лишь одним родом *Manticoceras*. Несмотря на то, что в верхнедевонских отложениях Восточно-Европейской платформы фауна

аммоноидей крайне скудна, в других регионов (Казахстан, Алтай и т. д.) являются одним из основных компонентов фауны и даже имеют биостратиграфическую значимость.

Класс двустворчатые моллюски здесь представлен весьма скудно, в основном родом Leptodesma, и некоторыми другими формами.

Есть и другой класс моллюсков – тентакулиты. В силу размеров, обнаружить их невооруженным глазом весьма непросто.

Тип кишечнополостные представлен преимущественно ругозами и аулопоридами. Ругозы здесь встречаются часто, в основном рода *Disphyllum*, *Tabulophyllum*, *Aulacophyllum*. Аулопориды редки.

Среди иглокожих были найдены лишь единичные фрагменты стеблей морских лилий.

Из хордовых попадались зубные пластины панцирных рыб (*Ptyctodus*). Они встречаются в приподошвенной части плотных известняков, где практически отсутствуют сопутствующая фауна.

Была найдена также проблематичная группа Microconchida, которую относят то ли к кольчатым червям, то ли к тентакулитам. Микроконхиды обитали в основном на раковинах брахиопод *Cyrtospirifer markovskii*, но могли поселиться и на моллюсках, и на кораллах.